NOAA
UAS Program

Welcome
to the

Research Areas

Evaluate observing strategies

Address critical data gaps

Facilitate UAS application

Evaluate ship-launched UAS technology and infrastructure

Develop extended visual line of sight operations

Analyze the value of high-altitude observations

Develop UAS CONOPS for conducting pinniped surveys in remote regions

UAS Program Mission

To facilitate UAS applications and utilization

Accelerate transition of UAS capabilities from research to operations

Provide expertise and resources for UAS research and development

Vision: To fully exploit UAS capabilities to meet NOAA’s mission requirements

 


This video highlights UAS efforts conducted by the NOAA Fisheries Alaska Fisheries Science Center in August 2019. Bogoslof Island is an active volcano that erupted 52 times over the course of 9 months, with the last eruption observed in August 2017. This island is largely inhabited by northern fur seals and this survey offered a unique opportunity to compare ground sampling surveys to estimate pup production and comparing that to aerial images captured with the APH-28 hexacopter mounted with a visual sensor. This work was conducted to support the 2020 UAS Program funded project, Phase II: Advanced sensor system for surveying cryptic marine mammals.

Unmanned Aircraft Systems - Program Highlights

Drones Are Helping NOAA Scientists To Conduct Research



News

Advances in Monitoring Restoration of Juvenile Salmon Habitat with Drones

0 276

Advances in Monitoring Restoration of Juvenile Salmon Habitat with Drones

Article and Figures Provided By: G. Curtis Roegner (NMFS)

Juvenile Pacific salmon rely on functioning wetlands for food and shelter as they migrate to the sea. In the Pacific Northwest, most wetland habitats have been lost or severely impacted, necessitating widespread restoration programs enacted to improve connectivity between water systems and reestablish native vegetation. Programs may include varied ecological engineering solutions, but all require monitoring to assess effectiveness. Until recently, assessments have lacked spatial and temporal resolution and have been time-consuming and expensive. 

 

With funding and logistical support from the NOAA Oceanic and Atmospheric Research (OAR) Uncrewed Systems Research Transition Office (USRTO), scientists from the National Marine Fisheries Service (NMFS) have developed integrated remote sensing protocols using Uncrewed Aerial Vehicles (drones), advanced instrumentation, and image analysis methods that together facilitate a broad habitat assessment capability. 

UAS Characterization of High Wind Damage to Vegetation and Rural Area Assessments

0 275

UAS Characterization of High Wind Damage to Vegetation and Rural Area Assessments

Article and Figures Provided By: Melissa Wagner (NSSL/CIMM)

Damage assessments provide insight into the occurrence, intensity, and distribution of tornadoes and other high-wind events. Current ground survey and satellite assessments, however, are restricted by available resources (e.g., personnel, time, and cost), accessibility, technological limitations, and damage indicators used to infer storm intensity. These assessments can be especially challenging in rural areas because storm damage is frequently underestimated due to the inability to detect vegetation stress, limited vegetation damage indicators, and low population density. In these sparsely populated areas, storm damage is often underreported and consequently affects severe storm climatology and our understanding of risk. Underestimating this risk can have serious implications on hazard monitoring as well as disaster preparedness and recovery in rural areas. With the help of the NOAA Oceanic and Atmospheric Research (OAR) Uncrewed Systems Research Transition Office (USRTO), scientists from the NOAA National Severe Storms Laboratory in collaboration with the Cooperative Institute for Mesoscale Meteorological Studies are working on developing an uncrewed aircraft system (UAS)-based approach to better characterize high-wind damage to vegetation and in rural areas to improve disaster response and recovery.

UAS Missions Supporting Flood Forecasting Following Hurricane Delta Landfall

0 521

UAS Missions Supporting Flood Forecasting Following Hurricane Delta Landfall

Article Provided By: Robert Moorhead (Director, NGI) and John Walker (Contract Support For USRTO). Photos Provided By: Robert Moorhead (Director, NGI)

The NOAA OAR UAS Program, in cooperation with the National Weather Service River Forecast Centers (NWS RFCs) in the Southern Region and the Northern Gulf Institute (NGI; a NOAA Cooperative Institute), established a study several years ago to determine the cost and contributions of UAS-collected data toward improving forecasts and warnings of significant flood events. While the impacts of severe flooding are not isolated to this area alone, according to NOAA NCEI’s 2020 report, U.S. Billion-Dollar Weather and Climate Disasters, “The highest frequency of inland flood (i.e., non-tropical) events often occur in states adjacent to large rivers or the Gulf of Mexico, which is a warm source of moisture to fuel rainstorms”. The need for accurate, rapidly obtainable data in this region is all the more emphasized when this fact is combined with other known impacts from land-falling tropical cyclones each hurricane season. 

In October 2020, NGI added to the list of previous successful UAS deployments in support of this study, as the group was once again called into action by the regional NWS RFC to collect aerial flood image data after Hurricane Delta made landfall in Louisiana and passed through Mississippi. 

NOAA GLERL Great Lakes Cyanobacteria Harmful Algal Bloom Monitoring

0 268

NOAA GLERL Great Lakes Cyanobacteria Harmful Algal Bloom Monitoring

Article and Figures Provided By Lauren Marshall (Cherokee Nation Businesses / GLERL)

While the pandemic has presented challenges to field operations these past few months, NOAA Great Lakes Environmental Research Laboratory (NOAA GLERL) has worked to continue collecting data in a safe manner. Data provides critical monitoring of cyanobacteria harmful algal blooms (cyanoHABs) in the western basin of Lake Erie. Crewed aircraft flyover operations, while delayed, continued to provide robust data sets beneath clouds and nearshore. In order to operate comfortably, crewed flyover operations are performed 3500-6500 feet with possible interference from cloud cover that is often forming as low as 1800 feet above the western basin. Next summer, with the support of UASPO funding, GLERL will operate a multi-rotor Uncrewed Aircraft System (UAS) to fly beneath the clouds and provide unprecedented imagery of areas close to shore, addressing a key information gap. The combination of these data sets will support the NOAA Lake Erie HAB Forecast.

12345678910Last